Contour Integral Representation for Generalized Marcum-Q Function and Its Application to Unified Analysis of Dual-Branch Selection Diversity over Correlated Nakagami-m Fading Channels

نویسندگان

  • C. Tellambura
  • A. Annamalai
  • V. K. Bhargava
چکیده

Using a circular contour integral representation for the generalized Marcum-Q function, Qm(a, b ) , we derive a new closed-form formula for the moment generating function (MGF) of the output signal power of a dual-diversity selection combiner (SC) in bivariate Nakagami-m fading with positive integer fading severity index. This result involve% only elementary functions and holds for any value of the ratio a / b in Qm(a, b ) . As an aside, we show that previous trigonometric integral representations for Qm(a, b) can be obtained directly from this contour integral. The MGF is used to unify the evaluation of average error performance and outage performance of a dual-branch SC for coherent, differentially coherent and noncoherent communications systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Exponential Integral Representation of the Generalized Marcum Q-Function QM (a, b) for Real-Order M with Applications

_ This article derives a new exponential-type integral representation for the generalized M-th order Marcum Q-function, , when M is not necessarily an integer. Our new representation includes a well-known result due to Helstrom for the special case of positive integer M and an additional integral correction term that vanishes when M is an integer. The new form has both computational utility (nu...

متن کامل

Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading

Using a circular contour integral representation for the generalized Marcum-Q function, ( ), we derive a new closed-form formula for the moment generating function (MGF) of the output signal power of a dual-diversity selection combiner (SC) in bivariate (correlated) Nakagamifading with positive integer fading severity index. This result involves only elementary functions and holds for any value...

متن کامل

A unified approach to performance evaluation of switched diversity in independent and correlated fading channels

This paper outlines a unified approach to performance evaluation of a broad class of coherent, differentially coherent and noncoherent digital communication systems with dual-branch switched diversity (SWC) reception over generalized fading channels. The moment generating function (MGF) of the signal power at the output of the SWC combiner and the first-order derivative of the MGF with respect ...

متن کامل

Simplified Performance Analysis of Energy Detectors over Myriad Fading Channels: Area under the Roc Curve Approach

This article investigates the energy detector's performance inmyriad fading environments by exploiting a canonical series representation of the generalized Marcum Q-function (along with higher-order derivatives of the moment generating function (MGF) of end-to-end signal-to-noise ratio (SNR) in closedform) or by a single integral formula involving the cumulative distribution function (CDF) of t...

متن کامل

Performance analysis for MRC and postdetection EGC over generalized gamma fading channels

In this paper, we provide a unified analysis of average symbol error probability (SEP) for a diversity system over generalized gamma fading channels, which is a generalization of Rayleigh, Nakagami, and Ricean fading channels. We consider independent generalized gamma fading on the diversity branches and derive different closed-form expressions of the average SEP for a general class of M -ary m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009